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ON HALLEY'S ITERATION METHOD 

WALTERGANDER 
Seminar fur angewandte Mathematik ETH, CH-8092 Zurich, Switzerland 

1. Introduction. Solving a nonlinear equation is a problem that has occupied mathematicians 
for many centuries and many numerical analysts of the present generation first learned how to do 
it from P. Henrici's textbook [T which has now been replaced by [8]. 

Nearly 300 years ago in 1694 Edmund Halley published a paper [6]in Latin where he presents 
a new method to compute roots of a polynomial. Halley is well known for first computing the 
orbit of the Halley comet, which he observed in 1682 and which will soon visit us again in 1986. 

Halley generalized an iteration formula due to Lagney for computing the cubic root of a 
number and obtained an iteration to compute roots of a polynomial. Halley did not use calculus 
to derive his formula. If we try to generalize and translate his derivation into modern mathemati- 
cal notation we can argue as follows: 

Let f be a C2 function and xk an approximation of a zero s of f .  We replace the equation 
f ( x )  = 0 by T(h) = 0, where T is the Taylor polynomial of degree 2 of f 

and h = x - xk.  Now if xk is a good approximation of s, then neglecting h2 we get from 

(2) T(h)  = 0 
the Newton correction 

(3) h = -f(x,)/f '(x,) 

Since we neglected h2, the denominator in (3) is wrong: equation (3) should be 

Therefore, replacing h in the denominator of (4) by the Newton correction (3), we obtain the 
Halley correction 

For the following discussion we rearrange Halley's iteration formula (5) to 

where 

In his paper [6],Halley calls the iteration formula (6a) the rational formula. He also considers the 
Euler correction 
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that is obtained by solving the quadratic equation (2)and which he calls the irrational formula. If 
we rearrange (7) and compute the correction closest to zero, we get Euler's iteration 

where t is defined by (6b). 
In the following we shall show how Halley's method and also many other thrd order iteration 

formulas may be derived algebraically using an elementary technique. For geometric interpreta- 
tions of Halley's method we refer to [I], [2]. 

2. Algebraic interpretation. Halley's method (6) belongs to the class of one point iteration 
methods without memory [12] 

(9) X k + l  = F ( x ~ ) .  


We consider the special case where the iteration function F has the form 


For the following discussion we assume that s is a simple zero of f and that f and G have a 
sufficient number of continuous derivatives in a neighborhood of s. It is well known [ l l ]  that the 
iteration (9) is of second order if 

(11)  	 F ' ( s )  = 0 ,  F " ( s )  f 0. 

Let u ( x ) = f ( x ) / f f ( x ) . Then we have u ' ( x )  = 1 - t ( x ) where t is defined by (6b). It follows 
that 

(12)  u ( s )  = 0 and u f ( s )= 1. 

Differentiating (10) we get 

(13)  F ' ( x )  = 1 - u ' ( x ) G ( x )- u ( x ) G f ( x ) .  

And using (12) we get F f ( s )= 1 - G(s) .  

LEMMA1. The iteration (9)  with F defined by (10) is of second order i f  and only if G ( s )= 1. 

We note that for the special case G ( x )= 1 we have Newton's method for the equation 
f ( x )  = 0. 

The iteration (9) is of third order if 

(14)  F f ( s )= F " ( s )  = 0 ,  F "'( s ) + 0 

Differentiating (13)we get 

Since /
U " ( X )  = - t y X )= -	-f + f ( x ) [  

2 f ( x )  
--

f jf' ( x )  
; 

f '( X )  f ' ( x 1 3  f ' ( X I *  

it follows that 

and 
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LEMMA2. The iteration (9)  with F defined by (10) is of third order i f  and only i f  G ( s ) = 1 and 
G ' ( s )  = ( 1 / 2 ) f  " ( s ) / f ' ( s ) .  

The assumptions of Lemma 2 are not helpful for choosing a function G since they need the 
knowledge of the zero s. However, if we choose 

(16 )  	 G( x )  = H (  t ( x ) )  

with some function 	H ,  then we have 
G ( s )  = H ( 0 )  

and 
G f ( s )= H f ( 0 )  t f ( s ) .  

Therefore the assumptions of Lemma 2 are simply H(0) = 1 and H'(0) = 1/2 .  We get the 
following theorem. 

THEOREM.Let s be a simple zero o f f  and H any function with H(0)  = 1,  H'(0)  = 1 / 2  and 
IH"(0) I < cc.The iteration x,, ,= F(x , )  with 

where 

is of third order. 

Many well-known h r d  order iterative methods are special cases of this theorem: 

(1) Halley's method 

(2) Euler's formula 

(3 )  Hansen-Patrick family [S] 


1 a + 3 

H ( t )  = ( a  + l ) ( a  + jl ( a  + 1 ) t ) '  = 1 + - t

2 
+--

8 
t 2  + . . .  . 

(4) Ostrowski's square root iteration [lo] 

(5)  Quadratic inverse interpolation 

Not all the third order iteration methods are special cases of this theorem. It is possible to 
describe all methods that do not explicitly depend on s by using the Schroder iteration functions 
[9, p. 5311. One can show [4]that all third order methods are given by the iteration function (10) 
with 

G ( x )  = H ( t ( x ) )  + f ( ~ ) ~ b ( x ) ,  

where b is an arbitrary function which is bounded for x + s. 
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A CONVERSE FOR THE CAYLEY-HAMILTON THEOREM 

CARMENCHICONE,N.J. KALTON*, AND IRA J. PAPICK 
Department of Mathematics, University of Missouri-Columbia, Columbia, MO 65211 

The Cayley-Hamilton theorem asserts that every n X n matrix A satisfies its characteristic 
polynomial, det(XI - A). This note deals with the problem of characterizing those polynomials 
for which the Cayley-Hamilton theorem holds. Informally stated our result is that the polynomials 
which a square matrix satisfies are precisely the multiples (in a ring of polynomials) of the 
characteristic polynomial. 

Some notation is necessary to make a precise statement of our theorem. If X denotes the n x n 
matrix of indeterminants (xi,), then it is apparent that det(X) is a polynomial in n2-variables. 
Moreover, if F(xij)  is any polynomial in n2-variables with coefficients in a commutative ring R 
with identity, then by F(X) we shall mean F(xij). We now restate our problem: Characterize 
those polynomials F(X) having the property that every n X n matrix A with entries in R satisfies 
the polynomial F(XI - A). We shall call such polynomials F(X) Cayley-Hamilton polynomials, 
and we may now state a precise converse of the Cayley-Hamilton theorem. 

THEOREM1. Let R be an infinite (commutative) integral domain, and let F(X) be a polynowrial 
in n2-variables with coefficients in R. Then F(X) is a Cayley-Hamilton polynomial if and only if 
F(X)  = det(X)G(X), where G(X) is a polynomial in n2-variables with coefficients in R. 

Before proceeding we make two observations. The "if" direction of the theorem is clear. For if 
A is an n x n matrix with entries in R, and if F(X) = det(X)G(X), then F(XI - A) = 

det(XI - A) G(X I - A ) .  Hence, by the Cayley-Hamilton theorem, A satisfies the polynomial 
F(XI - A). Secondly, the theorem is false without some assumptions on R.  For example if 
R = Z2, the field with two elements, define F(X) (x12 + x,,) x , , x ~ ~ .  = Then given 

with a,, E Z2,  we see that 

F(XI  - A) = (a12 + a21)(X - a11)(X - ~ 2 2 ) .  

Thus F(XI - A) = 0 unless A is either upper or lower triangular and not diagonal, and in this 
case 

F(XI - A) = (A - al1)(X - a,,) = de t (h I -  A). 
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